Character Frequency Analysis Info
Overall Character Frequecy Analysis (letter/probability):
a 7.52766
e 7.0925
o 5.17
r 4.96032
i 4.69732
s 4.61079
n 4.56899
1 4.35053
t 3.87388
l 3.77728
2 3.12312
m 2.99913
d 2.76401
0 2.74381
c 2.57276
p 2.45578
3 2.43339
h 2.41319
b 2.29145
u 2.10191
k 1.96828
4 1.94265
5 1.88577
g 1.85331
9 1.79558
6 1.75647
8 1.66225
7 1.621
y 1.52483
f 1.2476
w 1.24492
j 0.836677
v 0.833626
z 0.632558
x 0.573305
q 0.346119
A 0.130466
S 0.108132
E 0.0970865
R 0.08476
B 0.0806715
T 0.0801223
M 0.0782306
L 0.0775594
N 0.0748134
P 0.073715
O 0.0729217
I 0.070908
D 0.0698096
C 0.0660872
H 0.0544319
G 0.0497332
K 0.0460719
F 0.0417393
J 0.0363083
U 0.0350268
W 0.0320367
. 0.0316706
! 0.0306942
Y 0.0255073
* 0.0241648
@ 0.0238597
V 0.0235546
- 0.0197712
Z 0.0170252
Q 0.0147064
X 0.0142182
_ 0.0122655
$ 0.00970255
# 0.00854313
, 0.00323418
/ 0.00311214
+ 0.00231885
? 0.00207476
; 0.00207476
^ 0.00195272
0.00189169
% 0.00170863
~ 0.00152556
= 0.00140351
& 0.00134249
` 0.00115942
\ 0.00115942
) 0.00115942
] 0.0010984
[ 0.0010984
: 0.000549201
< 0.000427156
( 0.000427156
æ 0.000183067
> 0.000183067
" 0.000183067
ü 0.000122045
| 0.000122045
{ 0.000122045
' 0.000122045
ö 6.10223e-05
ä 6.10223e-05
} 6.10223e-0
First Character Frequecy Analysis:
s 7.55118
1 6.26416
m 6.16403
p 6.0229
a 5.17827
b 4.96031
c 4.85069
t 4.37507
d 4.15582
r 3.11136
l 3.09842
f 3.06432
h 2.99915
g 2.96764
k 2.9124
j 2.84766
n 2.53389
w 2.26717
2 2.11309
e 1.91844
i 1.77903
0 1.76004
o 1.33104
v 1.22573
3 1.11179
q 1.07467
4 1.02461
5 0.957276
7 0.918433
9 0.906348
6 0.883905
z 0.871821
8 0.85542
y 0.705225
u 0.56021
x 0.518345
S 0.360813
S 0.360813
M 0.296074
P 0.282263
B 0.256799
A 0.24644
C 0.237809
D 0.227019
T 0.218387
J 0.183428
R 0.179112
L 0.173501
F 0.166164
G 0.162711
H 0.153648
K 0.143289
N 0.114804
E 0.101856
W 0.100562
V 0.0828661
I 0.0820029
O 0.0599916
Z 0.0474754
U 0.0392751
Q 0.0388435
Y 0.0332328
! 0.0258957
X 0.0224429
* 0.0220113
@ 0.0202849
. 0.0151058
$ 0.013811
# 0.0120846
_ 0.00517913
- 0.00474754
` 0.00302116
[ 0.00302116
, 0.00302116
~ 0.00258957
= 0.00215797
/ 0.00215797
^ 0.00172638
< 0.00172638
+ 0.00172638
\ 0.00129478
? 0.00129478
; 0.00129478
% 0.00129478
{ 0.000863189
] 0.000863189
: 0.000863189
( 0.000863189
& 0.000431594
----------------------------------------
Last Character Frequecy Analysis:
e 7.34531
1 6.7933
n 5.81012
s 5.6513
r 5.35566
a 5.1869
3 4.59734
2 3.91327
6 3.77602
y 3.59302
t 3.51404
0 3.48167
d 3.3004
9 3.07425
5 2.96031
4 2.9288
o 2.91887
7 2.88262
8 2.62323
l 2.45146
k 1.75918
g 1.66552
m 1.63747
i 1.6038
h 1.54209
b 1.32154
p 1.12258
c 1.06474
x 1.06043
u 0.848515
w 0.726805
f 0.69832
f 0.69832
z 0.612864
j 0.317654
v 0.277947
q 0.220976
! 0.130342
E 0.0975403
S 0.08934
A 0.08934
N 0.0815713
R 0.0694867
D 0.0604232
Y 0.0535177
B 0.0487702
T 0.0448858
. 0.0444542
O 0.0431594
* 0.0384119
L 0.0345276
H 0.0332328
M 0.02978
G 0.0293484
K 0.0250325
C 0.0250325
X 0.0241693
@ 0.0237377
P 0.0228745
I 0.0220113
$ 0.0198533
# 0.0185586
U 0.015969
- 0.0146742
Z 0.0142426
W 0.0142426
F 0.013811
J 0.0107899
_ 0.00949508
Q 0.00733711
? 0.00733711
+ 0.00733711
^ 0.00474754
V 0.00474754
/ 0.00474754
, 0.00431594
; 0.00388435
) 0.00388435
% 0.00388435
~ 0.00302116
= 0.00302116
` 0.00215797
] 0.00172638
& 0.00172638
æ 0.000863189
\ 0.000863189
> 0.000863189
: 0.000863189
" 0.000863189
} 0.000431594
[ 0.000431594
Comments
Users who either:
1) Have been trained on choosing passwords
2) Have to meet strict password requirements will chose other patterns.
Will have a whole other set of characters that they will use.
Thats were using Markov Mode REALLY comes into its own! I love it.